

2-DEOXY-3-EPIECDYSONE FROM THE FERN *BLECHNUM VULCANICUM*

GRAEME B. RUSSELL, DAVID R. GREENWOOD, GEOFFREY A. LANE, JOHN W. BLUNT*
and MURRAY H. G. MUNRO*

Applied Biochemistry Division, DSIR, Palmerston North, New Zealand; *Chemistry Department, University of Canterbury, Christchurch, New Zealand

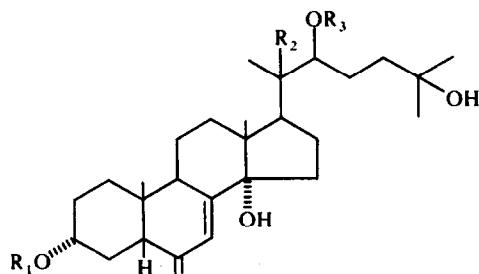
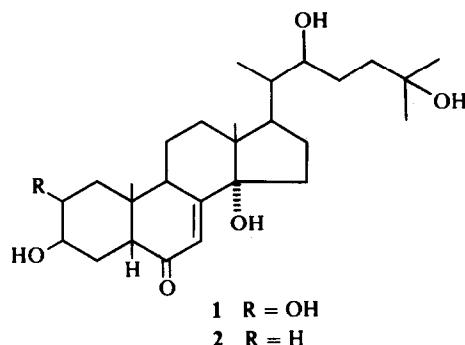
(Received 9 January 1981)

Key Word Index—*Blechnum vulcanicum*; Blechnaceae; ferns; ecdysteroids; 2-deoxy-3-epiecdysone; ecdysone.

Abstract—2-Deoxy-3-epiecdysone and ecdysone were isolated from fronds of the fern *Blechnum vulcanicum*. The structure and stereochemistry of the ecdysteroid were deduced from spectral data.

INTRODUCTION

Ferns have proved to be a rich source of ecdysteroids [1] and extracts of four New Zealand Blechnaceae have been shown to possess insect moulting hormone activity [2]. When *Blechnum vulcanicum*, a small fern growing in montane forests in New Zealand, was investigated for its ecdysteroid content, ecdysone (1) and a compound assumed to be 2-deoxyecdysone (2), were isolated. Comparison of this material with an authentic sample of 2-deoxyecdysone from *Cheilanthes serberi* (D. H. S. Horn, personal communication) indicated that the *Blechnum* compound was incorrectly identified. We report here the results of spectroscopic studies on the new phytecdysteroid (3).

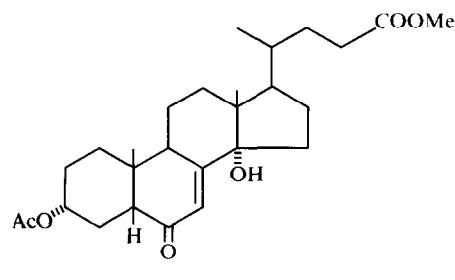


RESULTS AND DISCUSSION

Ecdysone (1) and 2-deoxy-3-epiecdysone (3) were isolated from *Blechnum vulcanicum* as described in the Experimental. Ecdysone was identical to an authentic sample (TLC, MS) and gave spectral data (^1H NMR, ^{13}C NMR, UV, IR) in agreement with that reported for this compound [1, 3].

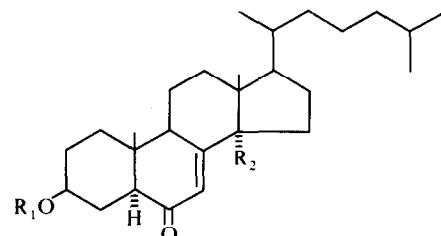
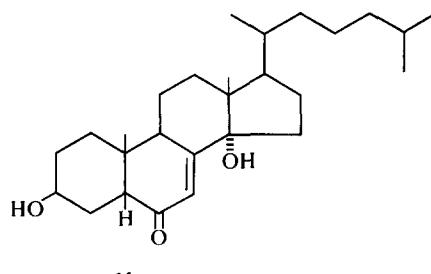
The crystalline 2-deoxyecdysteroid fraction, initially isolated by column chromatography, appeared homogeneous by TLC having the same R_f and colour reaction with the vanillin- H_2SO_4 spray reagent [1] as authentic 2-deoxyecdysone (2) isolated from *Cheilanthes serberi* (D. H. S. Horn, personal communication). However, HPLC showed the crystalline material to be a mixture (1:9) of 2 and a less polar component (3). Moreover, acetylation of the material gave as a major product, a diacetate (5), which was readily distinguished from 2-deoxyecdysone diacetate by TLC.

Preparative HPLC of the crystalline material gave a pure sample of 3. UV and IR spectra of 3 showed absorptions typical of ecdysteroids and its molecular formula was $\text{C}_{27}\text{H}_{44}\text{O}_5$ (M^+ 448, MS). The mass spectrum was indistinguishable from that of 2-deoxyecdysone [4]. Overnight acetylation of 3 in $\text{Py}-\text{Ac}_2\text{O}$ gave a diacetate (5) which showed two acetate methyl signals at δ 2.00 and 2.03 in the ^1H NMR spectrum (CDCl_3). The C-3 H resonance appeared as a broad band at δ 4.73, indicative of an axial proton, overlapping with

the C-22 H signal at δ 4.90. Brief acetylation for 30 min followed by chromatography gave a monoacetate (6) as shown by a single acetate methyl signal at δ 2.00 in the ^1H NMR spectrum. On a TLC plate the colour produced (dark blue) by this acetate with the vanillin spray reagent was the same as the parent steroid, indicating an unmodified side-chain, whereas the diacetate 5 gave a light blue spot. The ^1H NMR spectrum of 6 confirmed the presence of an axial proton, with a signal at δ 4.70 of peak-width at half-height of 20 Hz, well clear of the C-22 H signal at δ 3.68 ($W_{1/2} = 12$ Hz).



Of the several possibilities for the presence of an equatorial OH in a deoxyecdysone, the C-2 OH compounds can be excluded by biogenetic considerations. This leaves the possibility that 3 has either a 3 α -OH-5 β -H or a 3 β -OH-5 α -H configuration. The ^1H NMR spectrum of 3 in d_5 -pyridine shows C-18 and C-21 methyl signals (Table 1) at the same chemical shifts as for ecdysone and 2-deoxyecdysone but the C-19 methyl signal corresponds to that for synthetic 2-deoxy-3-epi-20-hydroxyecdysone (4) [5]. The C-19 methyl chemical shifts in CDCl_3 of the acetates 5 and 6 (Table 1) compare well with those of the 3 α -OAc-5 β -steroids 7 and 8 [5, 6] in contrast to that of the 3 β -OH-5 α -steroid 9 [7], the 3 β -OAc-5 α -steroid 10 [1] and the 3 β -OH-5 β -steroid 11 [7].



Final confirmation for the 2-deoxy-3-epiecdysone structure was obtained from ^{13}C NMR data. Resonances corresponding to those for carbons in rings B, C, D and the side-chain of ecdysone [3] are observed, but there are differences in ring A carbon resonances (Table 2). The presence of only one remaining methine carbon resonance at 69.1 ppm supports a ring A deoxyecdysone structure. The chemical shift of the C-19 resonance (δ 23.9) confirms a 5 β -H configuration, as a 5 α -H configuration would give a signal at higher field (δ 14) [8]. Using published data for 3 β -acetoxy-5 β -ergosta-7,22 dien-6-one [8] in CDCl_3 and comparing data for 3 β -acetoxy- and 3 α -hydroxy-5 β -steroids [9], the chemical shifts for ring A carbon resonances were estimated for 3 α -hydroxy-5 β -ergosta-7,22-dien-6-one (Table 2) and found to be in good agreement with those observed for 3. The possibility of a 3 β -OH, 2 α -OH or 2 β -OH structure could be eliminated on the basis of similar estimates.

The isolation of 2-deoxy-3-epiecdysone from *Blechnum vulcanicum* raises the possibility that other ecdysteroids from *Blechnum* species may contain the C-3 epimers. 3-Epiedysteroids have been isolated from insect tissue [10, 11] but have not previously been reported as plant constituents.

The ecdysteroid content of three related ferns was tentatively established by a TLC survey of the leaf extracts. *Blechnum nigrum* contained 20-hydroxyecdysone and both *B. minus* and *B. pennsylvanicum* contained 2-deoxyecdysone, ecdysone, 2-deoxy-20-hydroxyecdysone, 20-hydroxyecdysone and ponasterone A. These ecdysteroids are being isolated to confirm the respective identifications.

8

9 $\text{R}_1 = \text{H}, \text{R}_2 = \text{OH}$ 10 $\text{R}_1 = \text{Ac}, \text{R}_2 = \text{H}$

11

EXPERIMENTAL

Mps were determined on a Kofler microhotstage and are uncorr. Column chromatography was performed on Si gel (Mallinckrodt CC7), TLC on Merck plates (Si gel 60F₂₅₄) with CHCl_3 -EtOH (9:1) and the compounds were visualized as coloured spots by spraying with vanillin- H_2SO_4 soln and heating at 120° for 10 min. HPLC was performed on a radially compressed column of Si gel (Waters Assoc.).

Table 1. Chemical shifts (δ) of methyl proton resonances

	C-18 H ₃	C-19 H ₃	C-21 H ₃
In d_5 -pyridine			
Ecdysone (1)	0.73	1.08	1.28*
2-Deoxyecdysone (2)	0.74	1.05	1.28*
2-Deoxy-3-epiecdysone (3)	0.73	0.99	1.28*
2-Deoxy-3-epi-20-hydroxyecdysone (4)	1.23	0.99	1.59
In CDCl_3			
2-Deoxy-3-epiecdysone 3,22-diacetate (5)	0.67	0.92	0.93*
2-Deoxy-3-epiecdysone 3-acetate (6)	0.70	0.93	0.95*
2-Deoxy-3-epi-20-hydroxyecdysone 3-acetate (7)	0.86	0.92	1.22
3 α -Acetoxy ketodiol (8)	0.68	0.93	
3 β ,14 α -Dihydroxy-5 α -cholest-7-en-6-one (9)	0.70	0.87	
Deoxyviperidone 3-acetate (10)	0.63	0.87	0.94*
3 β ,14 α -Dihydroxy-5 β -cholest-7-en-6-one (11)	0.69	1.00	

* Doublet, $J = 6$ Hz.

Table 2. ^{13}C NMR resonances for ring A carbons (δ)

	Carbon Nos						
	1	2	3	4	5	10	19
Ecdysone (1)*	38.2	68.3	68.3	32.5	51.5	38.9	24.7
2-Deoxy-3-epiecdysone (3)*	35.6	31.4	69.1	34.3	57.2	36.8	23.9
3 β -Acetoxy-5 β -ergosta-7,22-dien-6-one† [8]	29.3	25.5	67.7	29.6	51.5	36.2	24.2
3 α -Hydroxy-5 β -ergosta-7,22-dien-6-one (estimated)‡	35.5	31.4	69.7	34.9	56.8	36.5	24.1

* In d⁵-pyridine.† In CDCl₃.‡ Changes in ring A carbon shielding values from 3 β -OAc- to 3 α -OH- were estimated by comparing data for 3 β -acetoxy-5 β -pregn-16-en-20-one with those for 3 α -hydroxy-5 β -androstan-17-one [9].

Plant material. Fronds of *Blechnum vulcanicum* were collected from the Taupo area, *B. minus*, *B. nigrum* and *B. pennina-marina* were collected from the Ruahine Ranges, New Zealand. Voucher specimens are deposited in the Herbarium, Botany Division, DSIR, Christchurch, New Zealand. The plant material was air-dried and milled prior to extraction.

Extraction and isolation. *B. vulcanicum* (3.8 kg) was extracted in a Soxhlet with MeOH. The MeOH extract was concd *in vacuo* to a small vol. and this partitioned ($\times 3$) between petrol and MeOH-H₂O (4:1). The aq. phases were combined, concd *in vacuo* and the residue (96 g) was percolated through Al₂O₃ (1 kg) with EtOH-EtOAc (1:1). The eluate (10:1) was concd *in vacuo* and repartitioned ($\times 3$) between petrol-Et₂O-MeOH-H₂O (8:5:3:1). The aq. phases were concd *in vacuo* to give a syrup (36 g) which was chromatographed on Si gel with a CHCl₃-EtOH gradient system, beginning with CHCl₃. Three hundred 10-ml fractions were collected. Fractions eluted with CHCl₃-EtOH, (23:2) and showing similar spots on TLC were combined to give a gum (4.5 g) which was rechromatographed on Si gel (100 g) with CHCl₃-EtOH, (19:1), to give impure 2-deoxy-3-epiecdysone (1.5 g), mp 237-249°. Fractions eluted with CHCl₃-EtOH (9:1) were rechromatographed with the same solvent to give ecdysone (2.8 g), mp 241-243° (lit. 237-239° [1]). HPLC with CH₂Cl₂-2-ProOH-MeOH (87:10:3), of the impure 2-deoxy-3-epiecdysone (20 mg) gave pure 3.

Ecdysone (1). This showed physical and spectral data identical with the lit. data [1, 3] and was identical with an authentic sample (TLC, MS).

2-Deoxy-3-epiecdysone (3). Mp 264-265°; $[\alpha]_D^{20} +98^\circ$ (CHCl₃); UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ϵ): 243 (4.061); IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3450 (OH), 1650 (CO). ^1H NMR (60 MHz, d₅-Py, TMS): δ 0.73 (3 H, S, C-18 Me); 0.99 (3 H, S, C-19 Me); 1.23 (3 H, d, $J = 6$ Hz, C-21 Me); 1.38 (6 H, S, C-26, 27 Me); 6.20 (1 H, m, C-7). ^{13}C NMR (20 MHz, d₅-pyridine, TMS, chemical shifts in ppm, signal multiplicity obtained by off-resonance decoupling experiments): 201.9, (s, C-6), 165.8 (s, C-8), 121.3 (d, C-7), 83.8 (s, C-14), 74.0 (d, C-22), 69.7 (s, C-25), 69.1 (d, C-3), 57.2 (d, C-5), 48.3 (d, C-17), 47.6 (s, C-13), 43.0 (d, C-20), 42.5 (t, C-24), 36.8 (s, C-10), 35.6 (t, C-1), 34.3 (t, C-4), 34.0 (d, C-9), 31.9 (t, C-15), 31.6 (t, C-12), 31.4 (t, C-2), 30.3 (q, C-27), 30.0 (q, C-26), 26.7 (t, C-16), 25.6 (t, C-23), 23.9 (q, C-19), 20.8 (t, C-11), 15.8 (q, C-18), 13.7 (q, C-21). MS (probe) 70 eV, m/z (rel. int. %): 448 (M⁺, 0.2), 430 (2), 412 (5), 397 (5), 396 (3), 379 (3), 361 (1), 332 (8), 314 (11), 299 (5), 283 (6), 284 (9), 263 (8), 251 (5), 99 (100), 81 (54).

2-Deoxy-3-epiecdysone-3,22-diacetate (5). Acetylation of 3 (3 mg) in pyridine-Ac₂O (1:1, 1 ml) at room temp. overnight, addition of ice, concd *in vacuo* and chromatography with CHCl₃

gave 5, 2 mg, mp 178-179°. ^1H NMR (60 MHz, CDCl₃, TMS): 0.67 (3 H, s, C-18 Me); 0.92 (3 H, s, C-19 Me); 0.93 (3 H, d, $J = 6$ Hz, C-21 Me); 1.23 (6 H, s, C-26, 27 Me); 2.00 (3 H, s, MeCO); 2.03 (3 H, s, MeCO); 4.73 (1 H, m, $W_4 = 28$ Hz, C-3); 4.90 (1 H, m, $W_4 = 14$ Hz, C-22); 5.87 (1 H, m, C-7). MS (probe) 70 eV, m/z (rel. int. %): 454 (7, M - AcOH - H₂O), 436 (16, M - AcOH - 2H₂O), 421 (6), 394 (9, M - 2 AcOH - H₂O), 376 (23, M - 2AcOH - 2H₂O), 361 (17), 327 (21), 326 (47), 267 (46), 266 (60), 109 (63), 99 (7), 95 (98), 93 (69), 91 (71), 81 (100).

2-Deoxy-3-epiecdysone-3-acetate (6). Acetylation of 3 (5 mg) in pyridine-Ac₂O (1:1, 2 ml) at room temp. for 30 min, work-up and chromatography with CHCl₃-EtOH (97:3) gave 6, 2 mg, mp 171-172°. ^1H NMR (60 MHz, CDCl₃, TMS): 0.70 (3 H, s, C-18 Me); 0.93 (3 H, s, C-19 Me); 0.95 (3 H, d, $J = 6$ Hz, C-21 Me); 1.24 (6 H, s, C-26, 27 Me); 2.00 (3 H, s, MeCO); 3.68 (1 H, m, $W_4 = 12$ Hz, C-22); 4.70 (1 H, m, $W_4 = 20$ Hz, C-3), 5.88 (1 H, m, C-7). MS (probe) m/z (rel. int. %): 472 (1, M - H₂O), 454 (5, M - 2H₂O), 412 (3, M - AcOH - H₂O), 394 (8, M - AcOH - 2H₂O), 374 (8), 343 (8), 267 (27), 266 (23), 253 (16), 251 (21), 217 (33), 99 (98), 95 (50), 93 (35), 91 (45), 81 (100).

Acknowledgements—Dr. R. W. Bailey and Mr. R. M. Greenwood of this Division for the collection of plant material. Dr. D. H. S. Horn, Division of Applied Organic Chemistry, CSIRO, Melbourne for a sample of 2-deoxyecdysone.

REFERENCES

1. Horn, D. H. S. (1971) in *Naturally Occurring Insecticides* (Jacobson, M. and Crosby, D. G., eds.) p. 333. Dekker, New York.
2. Russell, G. B. and Fenemore, P. G. (1971) *N.Z. J. Sci.* **14**, 31.
3. Krepinsky, J., Findlay, J. A., Danieli, B., Palmisano, G., Beynon, P. and Murakami, S. (1977) *Org. Magn. Reson.* **10**, 255.
4. Chong, Y. K., Galbraith, M. N. and Horn, D. H. S. (1970) *Chem. Commun.* 1217.
5. Galbraith, M. N., Horn, D. H. S., Middleton, E. J. and Hackney, R. J. (1969) *Aust. J. Chem.* **22**, 1059.
6. Kinnear, J. F., Martin, M. D., Horn, D. H. S., Middleton, E. J., Wilkie, J. S., Galbraith, M. N. and Willing, R. I. (1976) *Aust. J. Chem.* **29**, 1815.
7. Galbraith, M. N., Horn, D. H. S. and Middleton, E. J. (1974) *Aust. J. Chem.* **27**, 1087.
8. Smith, W. B. (1977) *Org. Magn. Reson.* **9**, 644.
9. Blunt, J. W. and Stothers, J. B. (1977) *Org. Magn. Reson.* **9**, 439.

10. Thompson, M. J., Kaplanis, J. N., Robbins, W. E., Dutky, S. R. and Nigg, H. N. (1974) *Steroids* **24**, 359.
11. Kaplanis, J. N., Thompson, M. J., Dutky, S. R. and Robbins, W. E. (1979) *Steroids* **34**, 333.

NOTE ADDED IN PROOF

Since this paper was received for publication, the isolation of 2-deoxy-3-epiecdysone from insect tissue has been reported (Isaac, R. E., Rees, H. H. and Goodwin, T. W. (1981) *Chem. Commun.* 418).